
Optical Flow Enhanced Multiple Objects Tracking

Guo Jixin
Huang Shan

Qian Kui

1 Introduction

1.1 Abstract

Multiple objects tracking refers to the process of detecting and identifying multiple moving or
stationary objects in a video, which can be used in various industries like surveillance, medical
imaging and augmented reality. The objective of multiple objects tracking is to associate target
objects in consecutive video frames. However, this process faces one major challenge – Since it is a
detection based identification process, when the detection of objects fails, the tracking of this object
will also fail.
Optical flow is the pattern of apparent motion of objects, surfaces and edges in a visual scene caused
by the relative motion between observer and a scene. It can be utilized to predict the position of
certain object using the information in the previous frames of a video, which has the potential to solve
the problem of multiple objects tracking. In this project, we implement an optical flow enhanced
multiple objects tracking algorithm focused on human tracking. And we test the reliability and
robustness of our tracking algorithm on multiple human intensive video clips, and analyse the results.

2 Description of Method

2.1 Algorithm

This project is about multi-object-tracking for persons. The algorithms involved consist of object
detection with YOLO v3[1], Simple Online and Realtime Tracking (SORT) with a deep association
metric[3] and a optical-flow feature tracker based on Kanade–Lucas–Tomasi (KLT)[2].

The flow of the algorithm goes as the followings. We process the frames of videos one by one. YOLO
v3 is used to detect all persons within this frame with indexes, bounding boxes and scores. The
detection results will be fed into deep SORT and the tracker will be updated. Given previous frame,
current frame and current detection result, the Kanade–Lucas–Tomasi based optical flow algorithm
will predict the possible positions of all persons. Then the predicted positions will be fed into deep
SORT and the tracker will be updated again. So, in all, the tracker will be updated 2xN number of
times, which N is the number of frames of the video.

2.2 Architecture

YOLO v3 network and Deep SORT CNN network

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Figure 1: Darknet-53 Figure 2: deep sort CNN architecture

2.3 Equations

YOLO
Bounding boxes prediction. The network predicts 4 coordinates tx, ty, tw, th. If the cell is offset
from the top left corner of the image by (cx, cy) and the bounding box prior has width and height
pw, ph, then we get the following bounding boxes prediction.

bx = σ (tx) + cx (1)
by = σ (ty) + cy (2)
bw = pwe

tw (3)
bh = phe

th (4)

Deep SORT
Assignment Problem. Motion information has been captured using Mahalanobis distance between
predicted Kalman states and new observations.

d(1)(i, j) = (dj − yi)T S−1i (dj − yi) (5)
Second metric is the smallest cosine distance between i-th and j-th detection in appearance space.

d(2)(i, j) = min
{
1− rTj r

(i)
k |r

(i)
k ∈ Ri

}
(6)

Build the association problem by combining these two metrics.

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (7)

Optical Flow
Dominant feature detection, Harris feature points. Compare the error of shifting windows and find
the largest and smallest values by finding the eigenvectors.

M =
∑

(x,y)∈W

[
I2x IxIy
IxIy I2y

]
=

[∑
(x,y)∈W I2x

∑
(x,y)∈W IxIy∑

(x,y)∈W IxIy
∑

(x,y)∈W I2y

]
(8)

Kanade–Lucas–Tomasi tracker. Find residual pixel displacement vector dL =
[
dLxd

L
y

]T
that mini-

mizes the matching error function between previous frame and new image frame.

εL
(
dL
)
= εL

(
dLx , d

L
y

)
=

uL
x+ωx∑

x=uL
x−ωx

uL
y +ωy∑
y=uy

(
IL(x, y)− JL

(
x+ gLx + dLx , y + gLy + dLy

))2
(9)

2

3 Implementation Details

We have trained a YOLO model on a new dataset and details will be covered at section 4. This project
is the environment of python 3.5, ubuntu 16.04. The dependencies of this project are tensorflow,
keras, numpy, sklearn, scipy, scikit-image and opencv.

First, every frame of the video is captured. Yolo is used to detect all persons within every frame,
which gives indexes, scores and bounding boxes. We use non-maxima suppression (NMS) to get
dominant bounding boxes. These detections are used to update the SORT object tracker with a Deep
Association Metric. During update, we will perform a matching cascade and the nearest feature
association is based on a pre-trained CNN network as described above.

Figure 3: Matching Cascade

Given previous frame, current frame and current detection result, the Kanade–Lucas–Tomasi based
optical flow algorithm will predict the positions of all persons. Then the predicted positions will be
fed into deep SORT and the tracker will be updated again. So, in all, the tracker will be updated 2xN
number of times, which N is the number of frames of the video. During the optical flow, we use
Harris and Shi-Tomasi feature points within every bounding boxes. By tracking these feature points,
we estimate a translation of objects between previous and current frame.

Figure 4: Kanade–Lucas–Tomasi algorithm

For illustration, we visualize detection and tracking bounding boxes. The detection and tracking
results are written into txt files and a output video will be generated for visualization purpose.

4 Experimental Setting

4.1 Dataset

The origin dataset in our proposal, TrackingNet, whose size is more than 1TB is too large. We then
turn to Pascal Visual Object Classes (VOC) data sets. Our own training work was based on VOC2007.
There are twenty object classes selected in this set:

• Person: person

• Animal: bird, cat cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

3

• Indoor: bottle, chair, dining table, potted plant, sofa, tvmonitor.

The training data provided consist of a set of images; each image has an annotation file giving a
bounding box and object class label for each object in one of the twenty classes present in the image.
Note that multiple objects from multiple classes may be present in the same image. The data has been
split into 50% for training/validation and 50% for testing. The distributions of images and objects
by class are approximately equal across the training/validation and test sets. In total there are 9,963
images, containing 24,640 annotated objects.

4.2 Training Parameters

Load pretrained weights from YOLO website and freeze layers in the first stage of training to get a
stable loss. Freeze the first 249 layers of total 252 layers. Then unfreeze and continue training, to
fine-tune. Parameters are shown in the Table 1.

Table 1: Training Parameters

Parameters First Stage Second Stage

Batch Size 32 8
Epochs 40 40

Early Stop No Yes

Learning Rate 0.001 0.0001
Constant Reduce (factor=0.1, patience=3)

4.3 Hardware Used

The training work was carried out on a Paperspace machine with Quadro M4000, which has 8 GB
memory. The code has been tested in python 3.6, ubuntu 16.04. The test environment is python 3.6.7,
keras-gpu 2.2.4 and tensorflow-gpu 1.12.0.

5 Results

In all the figures shown in this section, the blue bounding bounding box is the detection result while
the white bounding box is the tracking result. The unique number on the top left corner of the white
bounding box is the object ID. For the complete tracking videos, please refer to these links:
Video 1 Video 2

Figure 5: General Tracking Results

The above figure shows the general tracking results extracted from consecutive frames from a video
clip. It clearly shows that how each object is detected and identified, and how the algorithm reacts
when a new object shows up in the frame.

4

https://youtu.be/SKX-EcQnens/
https://youtu.be/56RKbOaInYI/

Figure 6: Feature Points

The above figure shows how optical flow extract feature points to perform further prediction.

Figure 7: with optical flow(Left),without optical flow(Right)

Figure 8: with optical flow(Left),without optical flow(Right)

The above two figures shows four frames that the detection fails since there is no blue bounding
boxes. The two frames on the left are generated with algorithms equipped with optical flow, the white
bounding box on the pedestrian shows that the tracking persist even if detection fails. However, the
right two figures are generated without optical flow enhancement, where tracking also fails.

5

Figure 9: Wrong Tracking

In left graph, notice the man in black on the right of the figure who has been identified as object 5, in
the next few frames he is occluded by the man in white, then in the right figure when the man in black
shows up again, he is wrongly identified as object 41. This indicates that when the object has been
occluded for too many frames and has too much posture variation, even with optical flow prediction,
the algorithm still has high probability of failure.

6 Discussion

6.1 Training results

We completed the training work of YOLO v3 on VOC2007 and assessed the performance of the
trained weights on daily photos. The training process was stopped due to triggering conditions of
early stopping. However, the loss was always up and down around 20, and our trained weights did
not perform as well as the pretrained weights based on COCO data set. As shown in Figure 10, our
trained YOLO v3 model recognizes many fewer objects and has less confidence on its judgment. It
seems that the properties of data sets may have a decisive impact on the results of models.

(a) VOC

(b) COCO

Figure 10: Comparison of weights based on different data sets

6

6.2 Conclusion

Combining the methods of yolov3, deepsort and KLT based optical flow, this project realize a
satisfaction level of multiple object tracking for human class. Traditional detection based tracking
algorithm suffers from the problem that the failure of detection will result in the failure of tracking,
with the help of optical flow algorithm, it is possible to predict the object next position using the
information from previous and current frames, therefore, we have extra measurement of object
information which can help to ease the pain of detection failure. Experiment shows that this method
provides robust tracking result of multiple objects.

6.3 Challenge

Multiple object tracking, involving classification, localization and even prediction, is really a hard
work. Thus, training a neural network for multiple object tracking takes much more time, even
running with GPU. Although the results of our training work are not satisfying for complex scenes,
our trained model can work well for VOC challenges and scenes with few objects.

Meanwhile, for object tracking, some classical methods are still competitive. With the pretrained
weights of neural networks, these methods can solve problems that once they have no ways to deal
with. We choose to combine these methods with deep learning and achieve better results.

6.4 Future Work

However, it is not negligible that when an object has been occluded for multiple frames and shows up
again, it is of high probability to be misidentified due to the change in object’s posture, this suggests
that the information provided by deepsort and optical flow is not capable of handling long time
occlusion, which is the main challenge in the future work of multiple objects tracking.

7 Apendix

Git Link

Multi-Object-Tracking

General Idea
A multi-object-tracking algorithm uses YOLO v3, deep-sort and optical flow based on
Kanade–Lucas–Tomasi (KLT).

Methodology
1. YOLO v3 detection
2. deep-sort tracker update
3. optical flow tracker update

Dependences
The code has been tested in python 3.5, ubuntu 16.04.
1. tensorflow
2. keras
3. numpy
4. sklearn
5. scipy
6. scikit-image
7. opencv

How to run
1. Download yolov3 model from [YOLO website](http://pjreddie.com/darknet/yolo/). Convert this
model to a Keras model. For this project, we train a new yolov3 model and use Keras.save-model.
2. Run script: python3.5 tracking.py

Results

7

https://github.com/jguoaj/multi-object-tracking/

1. test result video 1: https://youtu.be/SKX-EcQnens
2. test result video 2: https://youtu.be/56RKbOaInYI

Git Link for Training

Yolo3-voc-train

Dataset
VOC2007

Dependences
The code has been tested in python 3.6, ubuntu 16.04.
1. keras-gpu
2. tensorflow-gpu
3. matplotlib
4. Pillow
5. opencv

Reference work
1. keras YOLO v3: https://github.com/qqwweee/keras-yolo3
2. deep-sort: https://github.com/nwojke/deep-sort
3. YOLO v3 deep-sort integration: https://github.com/Qidian213/deep-sort-yolov3
4. optical flow: https://github.com/ZheyuanXie/OpticalFlow

8

https://github.com/qkprince/Yolo3-voc-train/

References

[1] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In: arXiv (2018).
[2] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Tech. rep. Interna-

tional Journal of Computer Vision, 1991.
[3] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple online and realtime tracking with a

deep association metric”. In: 2017 IEEE International Conference on Image Processing (ICIP)
(2017), pp. 3645–3649.

9

	Introduction
	Abstract

	Description of Method
	Algorithm
	Architecture
	Equations

	Implementation Details
	Experimental Setting
	Dataset
	Training Parameters
	Hardware Used

	Results
	Discussion
	Training results
	Conclusion
	Challenge
	Future Work

	Apendix

